إعداد: الأستاذ ك. حامدي

في هذا الحور

73	<u>Ģ</u>
1	المستوي المركب
3	مرافق عدد مركب
4	الشكل المثلثي لعدد مركب
6	خواص الطويلة و العمدة
7	الشكل الأستي
يقية	المعادلات من الدرجة الثانية بمعاملات حق
9	الأعداد المركبة و الهندسة
11	
14	أعمال موجهة
15	
16	
20	

المستوي المركب

${\mathbb C}$ الشكل الجبري لعدد مركب و قواعد الحساب في

مبرهنة

توجد مجموعة يُرمز لها ℃، تُسمّى مجموعة الأعداد المركبة و التي لديها الخواص التالية:

- ٣ تشمل جميع الأعداد الحقيقية
- تمتد عمليتا الجمع و الضرب في مجموعة الأعداد الحقيقية إلى مجموعة الأعداد المركبة، و قواعد الحساب تبقى نفسها
 - $i^2 = -1$ يوجد عدد مركب يُرمز له بالرمز i حيث = -1
 - حيث x و عددان حقيقيان z=x+iy عددان حقيقيان على عدد مركب على الشكل الوحيد

تعريف

z=x+iy تُسمّى الكتابة z=x+iy مع x و y عددان حقيقيان الشكل الجبري للعدد المركب x هو الجزء الحقيقي للعدد المركب z و يُرمز له z (z) z هو الجزء التخيّلي للعدد المركب z و يُرمز له z)

 $Im(z) = -\sqrt{2}$ 9 Re(z) = 3 $z = 3 - i\sqrt{2}$:

ملاحظات واصطلاحات

- $\operatorname{Im}(z)=0$ القول أنَّ العدد المركب z حقيقي يُكافئ القول أنَّ العدد المركب z
- $\operatorname{Re}(z) = 0$ القول أنّ العدد المركب z تخيّلي صرف يُكافئ القول أنّ العدد المركب z

■ يكون عددان مركبان متساويين إذا و فقط إذا كان لهما نفس الجزء الحقيقي و نفس الجزء التخيّلي. أي :

$$y = y'$$
 و $x = x'$ و $x + iy = x' + iy'$

$$y = 0$$
 و بالأخص $x + iy = 0$ و بالأخص

يّْ يَا z' = x' + iy' و z = x + iy فإنْ:

$$Re(z + z') = Re(z) + Re(z')$$

$$\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$$

$$z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$$

$$zz' = (x + iy)(x' + iy') = xx' + i^2yy' + i(xy' + x'y)$$

$$= xx' - yy' + i(xy' + x'y)$$

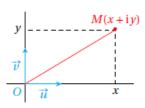
$$z^2 + z'^2 = (z + iz')(z - iz')$$

$$x^2 + y^2 = (x + iy)(x - iy)$$

التمثيل الهندسي لعدد مركب

هو معلم متعامد و متجانس للمستوى ($0; \vec{u}, \vec{v}$)

- نقول أنّ النقطة M ذات الإحداثيات (x;y) نقول أنّ النقطة M ذات الإحداثيات (x;y) نقول أنّ النقطة M هي صورة العدد المركب x و أنّ الشعاع \overline{OM} هو كذلك صورة x
 - z = x + iy من المستوي هي صورة لعدد مركب وحيد M(x;y) من المستوي هي صورة لعدد مركب وحيد \overline{OM} نقول أنّ z هو لاحقة النقطة z = x + iy و لاحقة الشعاع \overline{OM}
 - يُسمى عندئذ المستوى بالمستوى المركب



- الأعداد الحقيقية هي لواحق نقط محور الفواصل الذي نُسميه المحور الحقيقي
- الأعداد التخيّلية البحتة هي لواحق نقط محور التراتيب الذي نُسميه المحور التخيّلي الصرف
 - و نقول أنّ المعلم $(0; \vec{u}, \vec{v}) = \frac{\pi}{2}$ مُباشر

تطبيقات

تطبيق 1 تعيين الشكل الجبري

أكتب على الشكل الجبري الأعداد المركبة التالية

$$z_3 = \frac{1+4i}{1-\sqrt{2}i} \qquad z_2 = \frac{1}{\sqrt{3}+2i}$$

$$z_1 = (2 + i\sqrt{3})(5 - i) + (\frac{1}{2} + 3i)^2$$

تطبيق 2 حساب قوى العدد

- i⁸ و i⁷ ، i⁶ ، i⁵ ، i⁴ ، i³ و 1. أحسب
- $i^n=1$ أثبت أنّه إذا كان العدد الطبيعي غير المعدوم n من مضاعفات 4 فإنّ i^{201} . (†) عيّن، حسب قيم العدد الطبيعي i^{201} أمّ استنج

تطبيق 3 تعيين مجموعة نقط

 $Z = x^2 + y^2 - 4 + i(2x + y + 1)$

حيث x و y عددان حقيقيان.

- ي حيّن ثمّ أنشئ المجموعة $\mathcal E$ للنقط M(x;y) من المستوي بحيث يكون $\mathcal E$ حقيقي 1.
- من المستوي بحيث يكون Z تخيّلي صرف M(x;y) من المستوي بحيث يكون Z تخيّلي صرف

مرافق عدد مركب

تعريف مرافق عدد مركب

تعريف

 \overline{z} مرافق العدد المركب x-iy مع x و x=x+iy مع x=x+iy مرافق العدد المركب

أمثلة

$$\overline{2i} = -2i$$
 $\overline{-4} = -4$ $\overline{3+2i} = 3-2i$

التفسير الهندسي

ي المستوي المركب، النقطة M' صورة \overline{z} و النقطة M صورة z متناظرتان بالنسبة لمحور الفواصل

- $\overline{z} = \overline{z'}$ يُكافئ z = z'
- $\overline{(\overline{z})} = z$ مرافق \overline{z} هو z بمعنی آخر
- ي: $z \overline{z} = 2iy$ و $z + \overline{z} = 2x$ أي:

$$z - \overline{z} = 2iIm(z)$$
 ϱ $z + \overline{z} = 2Re(z)$

و ينتج:

- $z = \overline{z}$ يُكافئ $z = \overline{z}$
- $z + \overline{z} = 0$ تخيّلي صرف يُكافئ $z = \overline{z}$

المرافق و العمليات

و z' عددان مركبان و n عدد طبيعى غير معدوم

- $\overline{z+z'} = \overline{z} + \overline{z'}$
 - $\overline{z.z'} = \overline{z}.\overline{z'}$
 - $\overline{z^n} = (\overline{z})^n$
- $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$ ، $z' \neq 0$ إذا كان
- $\overline{\left(\frac{1}{z}\right)} = \frac{1}{z} \quad iz \neq 0$ اذا ڪان •

البرهان

.

تطبيقات

تطبيق 4 الاثبات دون حساب

 $z_2 = \frac{3+i}{5-7i}$ و $z_1 = \frac{3-i}{5+7i}$ ليكن العددان المركبان

- $z_2 = \overline{z_1}$ تحقق أنّ
- 2. استنتج دون إجراء حساب أن $z_1 + z_2$ هو عدد حقيقي و $z_1 z_2$ هو عدد تخيّلي صرف.
 - $z_1 z_2$ و تحقق من صحة هذه النتائج.

تطبيق 5 استعمال الخواص و العمليات على المرافق

 $P(z) = z^3 + z^2 - 4z + 6$ ب \mathbb{C} بعرف في P

- $\overline{P(z)} = P(\overline{z})$ ، z عدد مركب عد أجل كل عدد من أجل كل عدد مركب .1
- 2. تحقق أنّ i+1 جذر لكثير الحدود P. استنتج جذرا آخر لـ P

تطبيق 6 تعيين مجموعة نقط بطريقتين

عيّن، في المستوي المركب، مجموعة النقط M ذات اللاحقة z بحيث يكون $Z=z^2+\overline{z}$ حقيقي

المحرايق

 $\operatorname{Im}(z)=0$ الطريقة الأولى $Z=\overline{Z}$ الطريقة الثانية

الشكل المثلثي لعدد مركب

 $(0; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى معلم متعامد متجانس و مباشر

طويلة عدد مركب

تعريف

عدد مركب شكله الجبري x + iy مع x = z

 $|z| = \sqrt{x^2 + y^2}$ طويلة z هو العدد الحقيقى الموجب الذي نرمز له |z| و المعرف ب

OM = |z| إذا كانت النقطة M هي صورة العدد المركب z فإنّ |z|

ملاحظات

- z إذا كان z حقيقي فإنّ طويلة z هي القيمة المطلقة للعدد الحقيقي
 - M=0 يُكافئ z=0 لأنّ z=0 يُكافئ |z|=0
 - $z.\overline{z} = x^2 + y^2 = |z|^2$

عمدة عدد مركب غير معدوم

تعريف

عدد مركب غير معدوم صورته النقطة M. نُسمّي عمدةً للعدد z و نرمز arg(z) عدد مركب غير معدوم صورته النقطة M. نُسمّي عمدةً للعدد z

ملاحظات

لعدد المركب z غير المعدوم عدد غير منته من العُمدات، إذا كان θ أحدهما فإنّ كل عمدةٍ أخرى للعدد z هي من الشكل $\theta + 2k\pi$

الشكل المثلثي لعدد مركب غير معدوم

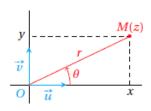
الإحداثيات القطبية

عدد مركب صورته النقطة M . نُعلِّم النقطة M في المستوي المركب بالإحداثيات الديكارتية (x;y) أو z=x+iy

: حيث $(r; \theta)$ جيث بالثنائية

$$\theta = (\vec{u}; \overrightarrow{OM})$$
 $g = r = OM = \sqrt{x^2 + y^2}$

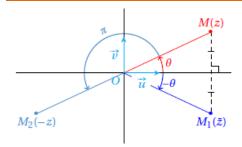
 $y = r \sin \theta$ و عليه : $x = r \cos \theta$



الشكل المثلثي

تعريف

عدد مركب غير معدوم. تُسمّى الكتابة $\theta=\arg(z)$ مع $z=r(\cos\theta+i\sin\theta)$ مع الشكل المثلثي للعدد $z=r(\cos\theta+i\sin\theta)$ المركب عبد معدوم.



نتائج

$$arg(-z) = arg(z) + \pi$$
 $garg(\overline{z}) = -arg(z)$

العلاقة بين الشكل الجبري و الشكل المثلثى

- $y = r \sin \theta$ و $x = r \cos \theta$ و فإنّ $x = r \cos \theta$ و اذا كنّا نعلم $x = r \sin \theta$
- $z=|z|=\sqrt{x^2+y^2}$ و إذا كنّا نعلم z و إذا كنّا نعلم z و فإن $z=|z|=\sqrt{x^2+y^2}$ و z=z=z=0 و z=z=z=0

تساوي عددين مركبين مكتوبين بالشكل المثلثى

 $z'=r'(\cos\theta'+\mathrm{i}\sin\theta')$ و $z=r(\cos\theta+\mathrm{i}\sin\theta)$ $\theta=\theta'$ [$2k\pi$] و r=r' و z=z'

تطبيقات

تطبيق 7 قراءة الطويلة وعمدة عدد مركب على الشكل

تطبيق 8 الانتقال من الشكل الجبرى إلى الشكل المثلثي

- $z = \sqrt{6} + i\sqrt{2}$ عين الطويلة و عمدة للعدد المركب 1.
 - 2. استنتج الشكل المثلثي للعدد z

تطبيق 9 التعرف على الشكل المثلثي لعدد مركب

يخ كل حالة من الحالات التالية، جد الطويلة و عمدة للعدد المركب z:

$$z = \sin\frac{\pi}{3} + i\cos\frac{\pi}{3} \quad (\Rightarrow) \qquad \qquad z = \sqrt{2}\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right) \quad (\Rightarrow) \qquad \qquad z = -2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \quad (\uparrow)$$

خواص الطويلة و العمدة

طويلة وعمدة جُداء

مبرهنة

z' من أجل كل عددين مركبين غير معدومين z

arg(z.z') = arg(z) + arg(z') $[2\pi]$ |z.z'| = |z|.|z'|

البرهان

 $z' = \sqrt{3} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right]$ و $z = 2 \left[\cos \left(\frac{\pi}{5} \right) + i \sin \left(\frac{\pi}{5} \right) \right]$ عثال:

نتائج: نُبرهِن بالتراجع أنّه من أجل عدد طبيعي n و من أجل كل عدد مركب z غير معدوم:

 $arg(z^n) = n arg(z)$ $[2\pi]$ g $|z^n| = |z|^n$

دستور موافر (Moivre): بتطبيق النتيجة السابقة على العدد المركب الذي طويلته 1 وheta عمدة له: $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

طويلة وعمدة كسر

z' من أجل كل عددين مركبين غير معدومين z و

$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z') \quad [2\pi]$$
 $\qquad \qquad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

البرهان

$$z'=rac{3}{2}\Big[\cos\Big(-rac{\pi}{6}\Big)+\mathrm{i}\sin\Big(-rac{\pi}{6}\Big)\Big]$$
 و $z=4\Big[\cos\Big(rac{2\pi}{3}\Big)+\mathrm{i}\sin\Big(rac{2\pi}{3}\Big)\Big]$: مثال

 $\arg\left(\frac{1}{z}\right) = -\arg(z)$ [2 π] و $\left|\frac{1}{z}\right| = \frac{1}{|z|}$ معدوم، معدوم، $\left|\frac{1}{z}\right| = \frac{1}{|z|}$

تطبيق 10 حساب قوى عدد مركب

$\sin\frac{\pi}{12}$ و $\cos\frac{\pi}{12}$ و مقارنة كتابة عددين مركبين و استنتاج

- $Z = \frac{z_1}{z_2}$ و $z_2 = 1 i$, $z_1 = \sqrt{3} i$ و $z_2 = 1 i$ و $z_2 = 1 i$
 - $\sin\frac{\pi}{12}$ و $\cos\frac{\pi}{12}$ على الشكل الجبري و استنتج القيم المضبوطة لـ Z على الشكل الجبري

تطبيق 12 تعيين مجموعة أعداد طبيعية

 $z = (\sqrt{3} + i)^n$ عدد طبیعی، نضع n

- 1. عين عمدةً للعدد المركب z
- موجب تماما z استنتج المجموعة (E) قيم n التي يكون من أجلها z عدد حقيقي موجب تماما

العدد المركب الذي طويلته 1

 $z=\cos heta+i\sin heta$ يُكتب كل عدد مركب طويلته 1 على الشكل

لتكن U مجموعة الأعداد المركبة التى طويلتها 1 و لتكن f الدالة التى ترفق بكل عدد حقيقي θ العدد المركب $f(\theta + \theta') = f(\theta)f(\theta')$: من أجل كل عددين θ و θ لدينا θ' من أجل كل عددين θ من أجل أجل

البرهان

كما هو الحالة بالنسبة للدالة الأسية فإنّ الدالة f " تُحوّل كذلك الجمع إلى جداء " ومنه الترميز التالى

تعريف

 $e^{i\theta} = \cos\theta + i\cos\theta$ أي العدد المركب الذي طويلته 1 و θ عمدةً له بالرمز $e^{i\theta}$

الحالة العامة

z عدد مركب غير معدوم. نُسمِّي الكتابة $z=r\mathrm{e}^{\mathrm{i}\theta}$ مع الشكل الأسنِّي للعدد z

قواعد الحساب على الشكل الأسِّي

- $re^{i\theta} \times r'^{e^{i\theta'}} = rr'e^{i(\theta+\theta')}$
 - $\frac{re^{i\theta}}{r/e^{i\theta'}} = \frac{r}{r'}e^{i(\theta-\theta')} \quad \blacksquare$
 - $\overline{re^{i\theta}} = re^{-i\theta}$
- $\theta = \theta'$ [2 π] و r = r' و تُكافئ $r e^{i\theta} = r' e^{i\theta'}$
- $\left(\mathrm{e}^{\mathrm{i}\theta}\right)^n=\mathrm{e}^{in\theta}$ ، n دستور موافر : من أجل ڪل عدد طبيعي

 $z' = 2e^{i\frac{\pi}{4}}$, $z = 2e^{i\frac{\pi}{4}}$:

تطبيقات

تطبيق 13 الانتقال من شكل إلى آخر

ي كل حالة ، أكتب العدد المركب z على الشكل الأسنّي ثم استنتج الشكل الجبري لكل من $ar{z}$ و $rac{1}{z}$: $z = -7e^{i\frac{\pi}{6}}$ (2) $z=2\mathrm{i}\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \text{ (a)}$ $z = \frac{1}{1+i}$ (1)

تطبيق 14 استعمال الأشكال المختلفة لعدد مركب

المستوي المركب منسوب إلى معلم متعامد و متجانس و مباشر $(0; \vec{u}, \vec{v})$ (وحدة الرسم: 4 cm). (طحب منسوب إلى معلم متعامد و متجانس و مباشر $d = \frac{\sqrt{3}}{2} \, \mathrm{e}^{-i\frac{\pi}{6}}$ $c = \frac{3}{2} + \frac{\sqrt{3}}{2} i$ $b = \mathrm{e}^{i\frac{\pi}{3}}$ a = 1 نعتبر النقط D ، C ، B ، A ذات اللواحق على الترتيب:

- .1 أكتبc على الشكل الأستى و d على الشكل الجبرى.
 - 2. (أ) مثل النقط C ، B ، A و D في المعلم.
 - (ب) برهن أن الرباعي OACB هو معين

المعادلات من الدرجة الثانية معاملات حقيقية

الجذران التربيعيان لعدد حقيقي

تعريف

 \mathbb{C} عدد حقيقي. الحلول في \mathbb{C} للمعادلة \mathbb{C} للمعادلة عند \mathbb{C} تُسمّى الجذور التربيعية للعدد \mathbb{C}

خاصية

کل عدد حقیقی یقبل جذرین تربیعیین فے C

- $-\sqrt{a}$ إذا كان $a \ge 0$ ، فإنّهما العددان الحقيقيان $a \ge 0$
- $-i\sqrt{-a}$ و $i\sqrt{-a}$ و $i\sqrt{-a}$ و أنهما العددان المركبان المترافقان a<0

مثال: الجذران التربيعيان للعدد 2 في $\sqrt{2}$ هما $\sqrt{2}$ و $\sqrt{2}$ و الجذران التربيعيان للعدد 3 في $\sqrt{2}$ هما $\sqrt{2}$ و $\sqrt{2}$ المجذران التربيعيان للعدد 3 في المجذران التربيعيان العدد 3 في المجذران العدد 3 في المجذران التربيعيان العدد 3 في المجذران العدد 3 في المجذ

الجذران التربيعيان لعدد مركب

تعريف

 \mathbb{C} الجذرين التربيعيين للعدد \mathbb{C} للمعادلة \mathbb{C} الجذرين التربيعيين للعدد \mathbb{C}

خاصية

ڪل عدد مرڪب يقبل جذرين تربيعيين في C

w = 15 - 8i عين الجذرين التربيعيين للعدد المركب : عين الجذرين التربيعيين العدد المركب

$(a \neq 0)$ المعادلة $a \neq 0$ مع $az^2 + bz + c = 0$ المعادلة

مبرهنة

 $\Delta=b^2-4ac$ ، مُميّزها ($a\neq 0$ مُميّزها) مُعادلة ($a\neq 0$ مُعيّزها) مُعادلة ($a\neq 0$ مُعيّزها) لتكن المعادلة

- $-\frac{b}{2a}$ إذا كان $0=\Delta$ ، فإنّ المعادلة تقبل حلا مضاعفا هو
 - اذا كان $0 \neq \Delta$ ، فإنّ المعادلة:
- $\frac{-b+\sqrt{\Delta}}{2a}$ و هما $\frac{-b-\sqrt{\Delta}}{2a}$ و هما و تقبل حلين حقيقيين إذا كان 0>0 و هما
- $\frac{-b+i\sqrt{-\Delta}}{2a}$ و هما $\frac{-b-i\sqrt{-\Delta}}{2a}$ و هما $\Delta<0$ و متن مركبين مترافقين إذا كان $\Delta<0$

ملاحظة

 $az^2+bz+c=a(z-z_1)(z-z_2)$ ، z مركب عدد مركب من أجل كانت z_2 على المعادلة، فإنّ من أجل كانت z_2

 $z_2=\overline{z_1}=-rac{1}{2}-{
m i}rac{\sqrt{3}}{2}$ و $z_1=-rac{1}{2}+{
m i}rac{\sqrt{3}}{2}$ هما : حلا المعدلة $z^2+z+1=0$

تطبيقات

تطبيق 15 حل معادلة من الدرجة الثانية

 $[0;\pi[$ المجال المجال المجال $z^2-2(\sin\theta)z+1=0$ و حيث $z^2-2(\sin\theta)z+1=0$ المجال ا

- $\Delta = -4\cos^2\theta$ تحقق أنّ
- $z_2=\mathrm{e}^{\mathrm{i}\left(rac{\pi}{2}+lpha
 ight)}$ و $z_1=\mathrm{e}^{\mathrm{i}\left(rac{\pi}{2}-lpha
 ight)}$: (ب) حل في $z_1=\mathrm{e}^{\mathrm{i}\left(rac{\pi}{2}-lpha
 ight)}$ و تحقق أنّ حلول هذه المعادلة تُكتب

تطبيق 16 حل معادلة من الدرجة الرابعة بمعاملات حقيقية

 $P(z) = z^4 - 4z^3 + 4z^2 - 4z + 3$: is in the street in

- 1. أثبت أنّه يوجد كثير حدود Q(x) من الدرجة الثانية بمعاملات حقيقية حيث من أجل كل عدد مركب z ، $P(z)=(z^2+1)Q(x)$
 - P(z) = 0 حلول المعادلة © حلول (ب) .2

تطبيق 17 حل معادلة باستعمال الشكل الجبرى

 $z^2 - \overline{z} + \frac{1}{4} = 0$ حل في \mathbb{C} المعادلة

الأعداد المركبة و الهندسة

لاحقة شعاع

تعريف

z=a+ib هو العدد المركبات (a;b) هو العدد المركب الأحقة الشعاع \vec{u}

مبرهنة

B و Z_B حيث Z_B و Z_B هما لاحقتا النقطتين Z_B و لاحقة الشعاع \overline{AB} هو \overline{AB}

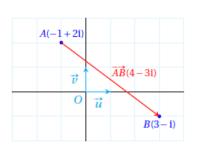
البرهان

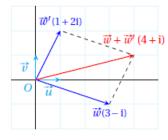
,

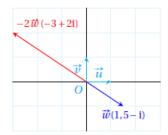
نتائج

- 1. تساوي شُعاعين يُكافئ تساوي لاحقتيهما
- 2. إذا كان \overline{w} و \overline{w} شعاعان لاحقتيهما z و z على الترتيب فإنّ العدد المركب z+z' هو لاحقة الشعاع $\overline{w}+\overline{w'}$ و من أجل كل عدد حقيقى z+z' ، العدد المركب z هو لاحقة الشعاع z+z'

أمثلة







لاحقة المرجح

مبرهنة

 $\alpha+\beta+\gamma\neq 0$ هي نقط مثقلة من المستوى لواحقها z_B ، z_A و z_B بهذا الترتيب، مع $(C;\gamma)$ هي نقط مثقلة من المستوى لواحقها لاحقة G مرجح هذه النقط هو العدد المركب:

$$z_G = \frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma} \square$$

البرهان

نتائج

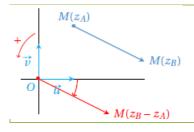
- $z_I = \frac{z_A + z_B}{2}$ هو [AB] هو القطعة I
- $z_G = \frac{z_M + z_N + z_P}{3}$ هو MNP هركز ثقل المثلث G هو آ

(\vec{u}, \vec{AB}) الزاوية (AB، الزاوية

 $\overrightarrow{OM} = \overrightarrow{AB}$ هو شعاع غير معدوم و M النقطة حيث \overrightarrow{AB}

$$AB = |z_B - z_A| \square$$

$$(\vec{u}, \overrightarrow{AB}) = \arg(z_B - z_A) \square$$



أقياس زاوية موجهة

 $z_C \neq z_D$ و $z_A \neq z_B$ حيث z_C ، z_C ، z_B ، z_A لواحقها z_C ، z_B ، z_A النقط التي لواحقها $z_A \neq z_B$ حيث $z_A \neq z_B$ و $z_A \neq z_B$ و

$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_P - z_A}\right) \square$$

البرهان

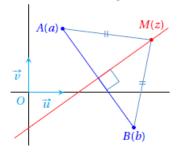
حالة خاصة

 $(\overrightarrow{MA}, \overrightarrow{MB}) = \arg\left(\frac{z-b}{z-a}\right)$ الدينا: $z \neq b$ و $z \neq a$ ديث $z \neq a$ دي

تحديد مجموعات نقط

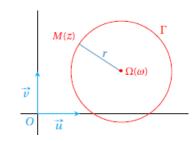
 $(a \neq b)$ و a نقطتان لاحقتاهما a و b مع aمجموعة النقط Δ للنقط M ذات اللاحقة Z حيث :

[AB] هي محور القطعة المستقيم |z-a|=|z-b|



M عدد حقيقي موجب (r>0). مجموعة النقط r للنقط rذات اللاحقة z حيث |z-a|=r هي الدائرة التي

r مركزها Ω ذات اللاحقة ω و نصف قطرها



تطبيقات

تطبيق 18 استعمال نسبة أعداد مركبة

نعتبر، في المستوي المركب المنسوب إلى معلم متعامد، متجانس و مباشر $(0;\vec{\imath},\vec{j})$ ، النقط D، C، B، A بهذا الترتيب ذات اللواحق:

$$d = 1 - 3i$$
 $c = -1 + i$ $b = 2$ $a = -2$

أثيت أنّ المثلثين BCD و ACD قائمين.

 $-rac{\pi}{2}$ أو $+rac{\pi}{2}$ أو $+rac{\pi}{2}$ أن ألسنقيمين (AB) و (CD) متعامدان، يكفي أن نُبرهن أنّ المستقيمين (AB) و $+rac{\pi}{2}$ أو و $+rac{\pi}{2}$

تطبيق 19 تعيين مجموعة نقط

 $z_B=2$ i و $Z_A=1+i$ و انقطتان لاحقتاهما A

$$z' = \frac{z-2i}{z-1-i}$$
 العدد المركب ، $z \neq z_A$ ، $z \neq z_A$ ، العدد مركب غدد مركب

- |z'|=1 حيث المجموعة ع للنقط M(z) حيث 1
- يت المجموعة \mathcal{F} للنقط M(z) حيث عين المجموعة عين ال
- ديث z تخيّلي صرف M(z) للنقط G النقط (ج.) عيّن المجموعة G

الأعداد المركبة و التحويلات النقطية

 $(0; \vec{u}, \vec{v})$ المستوى منسوب إلى معلم متعامد متجانس و مباشر

Z' هو تحويل نقطى الذي يرفق بالنقطة M ذات اللاحقة Z النقطة M' ذات اللاحقة Z'

 $z\mapsto z'=f(z)$ ب العرفة على $z\mapsto z'=f(z)$ ب يُمكن أن نرفق للتحويل النقطى $z\mapsto z'=f(z)$ الدالة الوحيدة

T العبارة المركبة للتحويل النقطي z'=f(z) العبارة المركبة للتحويل النقطي

العبارة المركبة للانسحاب

مبرهنة

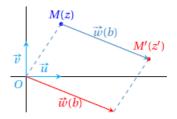
b هو شعاع لاحقته \vec{w}

العبارة المركبة للانسحاب الذي شُعاعه $ec{u}$ هي

 $z' = z + b \square$

البرهان

..

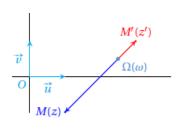


العبارة المركبة للتحاكي

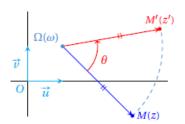
مبرهنة

 Ω هي نقطة لاحقتها ω و k هو عدد حقيقي غير معدوم. العبارة المركبة للتحاكي الذي مركزه Ω و نسبته k هي $z'-\omega=k(z-\omega)$

•••



الأعداد المركبة نهائي علوم و رياضيات



مبرهنة

 Ω هي نقطة لاحقتها ω و θ عدد حقيقي.

العبارة المركبة للدوران الذي مركزه Ω و زاويته θ هي $z'-\omega=\mathrm{e}^{\mathrm{i}\theta}(z-\omega)$

البرهان

...

 $z'=\mathrm{e}^{\mathrm{i} heta} z$ العبارة المركبة للدوران r الذي مركزه 0 مبدأ المعلم و زاويته θ هي عالم حالة خاصة العبارة المركبة للدوران

تطبيقات

تطبيق 20 استعمال العبارة المركبة لتحاكى

-1-2i هو التحاكى الذي نسبته 2 و مركزه النقطة I ذو اللاحقة I+1. لتكن A النقطة ذات اللاحقة h

- h عين العبارة المركبة للتحاكى 1
- h عيّن لاحقة النقطة A' صورة A بالتحاكى A'

تطبيق 21 استعمال العبارات المركبة

نعتبر، في المستوى المتعامد، المتجانس و المباشر ($\vec{t}, \vec{t}, \vec{t}$) النقط \vec{t} \vec{t} و الشعاع \vec{t} ذات اللوحق:

$$z_{\vec{w}} = -1 + \frac{5}{2}i$$
 $z_P = 3 + 2i$ $z_C = -3 - \frac{1}{4}i$ $z_B = \frac{3}{2} - 6i$ $z_A = \frac{3}{2} + 6i$

هو التحاكي الذي مركزه C نسبته $\frac{1}{3}$ هو الأنسحاب الذي شعاعه \overline{w} و \overline{w} هو الدوران الذي مركزه C و زاويته $\frac{\pi}{2}$

- S = r(P) و R = h(P) ، Q = t(B) و 1.
- 2. أثبت أن المثلث PQR قائم و متساوى السافين و استنتج طبيعة الرباعي PQRS

ملخص التحويلات النقطية (الانسحاب، التحاكي و الدوران)

\neg	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		
	الانسحاب	التحاكي	الدوران (في المستوي المُوجه)
ال	الانسحاب الذي شعاعه مو التحويل النقطي الذي يرفق بكل نقطة M من المستوى النقطة M' حيث: $\overline{MM'} = \overline{u}$	التحاكي الذي مركزه 0 و نسبته k هو التحويل النقطي الذي يرفق بكل نقطة M من المستوي النقطة M' M' M' $k=2$ M M' M $k=1$	الدوران الذي مركزه 0 و زاويته α هو التحويل النقطي الذي يرفق النقطة α بنفسها و بكل نقطة α من المستوي النقطة α حيث: $M' = \alpha$ [α α] α [α] α α] α α [α] α α] α α α] α
الترمير	$ec{u}$ يُرمز إلى الانسحاب الذي شعاعه $t_{\overline{u}}$ بالرمز	يُرمز إلى التحاكي الذي مركزه 0 و $h(oldsymbol{0}, oldsymbol{k})$ نسبته k بالرمز:	يُرمز إلى الدوران الذي مركزه 0 و زاويته $lpha$ بالرمز: $r(oldsymbol{o}, oldsymbol{lpha})$
النقط الصامدة	• إذا كان $\vec{u} \neq \vec{0}$: \vec{u} توجد نقط صامدة • إذا كان $\vec{u} = \vec{0}$: كل النقط صامدة	• إذا كان $k \neq 1$: المركز 0 هو النقطة الصامدة الوحيدة • إذا كان $k = 1$: كل النقط صامدة • إذا كان $k = 1$:	• إذا كان $[2\pi]$ $0 \neq 0$: المركز 0 هو النقطة الصامدة الوحيدة • إذا كان $[2\pi]$ $\alpha = 0$: كل النقط صامدة
الخواص المُميّزة	من أجل كل نقطتين M و N ذات الصورتين M' و N' لدينا: $\overline{M'N'} = \overline{MN'}$	• 0 $M e M'$ also lurishas elects • avi fet $M = M'$ is an independent of $M = M'$ is a substitution of $M = M'$ and $M =$	من أجل كل نقطتين M و N ذات الصورتين M' و N' لدينا: $M'N' = MN \bullet \left(\overline{MN}, \overline{M'N'}\right) = \alpha [2\pi] \bullet$
العبارة المركبة	$ec{u}(b)$ انسحاب شعاعه $z'=z+b$	k تحاك مركزه $\Omega(\omega)$ و نسبته $z'-oldsymbol{\omega}=oldsymbol{k}(\mathbf{z}-oldsymbol{\omega})$	$ heta$ دوران مرکزه $\Omega(\omega)$ و زاویته $z'-\omega=\mathrm{e}^{\mathrm{i} heta}(z-\omega)$

و عكسيا كل تحويلا نقطيا عبارته المركبة هي $\mathbf{z}' = a\mathbf{z} + b$ مع $\mathbf{z}' = a\mathbf{z} + b$ هو:

- : a = 1 إذا كان $\vec{u}(b)$ انسحاب شعاعه
- $: \boxed{a \in \mathbb{R}^* \{1\}}$ ان Ω نسبته a مركز التحاكي هو النقطة $w=\frac{b}{1-a}$ ذات اللاحقة

|a| = 1 إذا كان Ω مركز الدوران هو النقطة. arg a $w = \frac{b}{1-a}$ ذات اللاحقة

أعمال موجهة

العمل الموّجه الأول: مجموعات نقط

في كل حالة من الحالات التالية ، عيّن هندسيا مجموعة النقط M ، من المستوي المركب، ذات اللاحقة z التي تحقق العلاقة المقترحة:

بدلالة الطوبلة

$$\sqrt{2}|z+1| = |(1+i)z-4|$$
 (2)

$$\left|\bar{z} + \frac{i}{2}\right| = 4$$
 (ب)

$$|z-3| = |z+2i|$$
 (1)

$$\left|\frac{z+2i}{z+1-2i}\right| > 1 \text{ (a)}$$

$$|z+1-2i| < \sqrt{5}$$
 (2)

بدلالة العمدة

$$\arg\left(\frac{z+1}{z-2i}\right) = \frac{\pi}{2}$$
 (2)

$$arg(iz) = -\frac{\pi}{4}$$

$$arg(\bar{z}) = \frac{\pi}{3}$$
 (ب)

$$arg(z) = \frac{\pi}{6}$$
 (1)

العمل الموّجه الثاني: البرهان باستعمال الأعداد المركبة أو البرهان هندسيا

في المستوي المركب، ABC هو المثلث بحيث القيس الرئيسي للزاوية (ĀΒ; ĀĊ) ينتمي إلى]π;0[. نُنشئ خارج هذا المثلث، المربعين ACRS و BAMN ثمّ متوازى الأضلاع MASD و ليكن I مركزه.

■ أنشئ الشكل.

الهدف من التمرين هو إثبات أنّ المستقيم (AD) هو ارتفاعٌ للمثلث ABC و أنّ AD = BC. لهذا نستعمل طريقتين:

استعمال الأعداد المركبة

.C و a هي لواحق على الترتيب للنقط b ، a

1. أحسب لواحق النقطتين S و M بدلالة b ، a و c.

. \overrightarrow{BC} و لاحقة الشعاع \overrightarrow{AD} و لاحقة الشعاع .2

AD = BC و متعامدان و أنّ الشعاعين \overrightarrow{AD} و \overrightarrow{BC} متعامدان و أنّ

طريقة هندسية

ليكنr الدوران الذي مركزه A و زاويته $\frac{\pi}{2}$.

1. ما هي صور النقط M و C بالدوران r ؟

2. S' هي صورة S بالدوران r. أثبت أنّ النقطة A هي منتصف القطعة المستقيمة ['CS].

3. 'I هي صورة I بالدوران r. أثبت أنَّ النقطة 'I هي منتصف القطعة المستقيمة ['BS].

4. استنتج أنّ المستقيم (AD) عمودي على المستقيم (BC) و أنّ AD = BC

ملحق

التشابه المستوي المباشر

تمارين ومسائل للتعمق

نعتبر في المستوي المركب المنسوب إلى معلم متعامد متجانس و $(0, \vec{u}, \vec{v})$ مباشر $(0, \vec{u}, \vec{v})$ النقطة $(0, \vec{u}, \vec{v})$ اللحقتين $(0, \vec{u}, \vec{v})$ اللاحقتين

$$\overline{w} = 3 - i\sqrt{3}$$
 e^{-} $w = 3 + i\sqrt{3}$

- 1. عين الطويلة و عمدة للعدد w. و استنتج الطويلة و عمدة لـ \overline{w}
- 2. نعتبر العدد المركب 4-w. أكتب هذا العدد على الشكل الجبري ثم على الشكل المثلثي.
 - 3. عين الطويلة و عمدة للعدد $\frac{w}{w-4}$ و استنتج الطويلة و عمدة للعدد المركب $\frac{\overline{w}}{w-4}$
 - لستنتج أنّ النقط O ، A ، O و M تنتمي إلى دائرة يُطلب تحديدها.
 - نعتبر في المستوي المركب المنسوب إلى معلم متعامد متجانس و مباشر $(0; \vec{u}, \vec{v})$ النقطتين $a = 5 i\sqrt{3}$ و مباشر $b = 4 + 2i\sqrt{3}$ و لتكن $a = 5 i\sqrt{3}$
 - 1. عيّن z_K لاحقة النقطة K بحيث يكون ABQK متوازي الأضلاع z_K عيّن z_K أثبت أنّ $z_K = \frac{z_K a}{z_K}$ تخيّلي صرف. ماذا تستنتج بالنسبة إلى المثلث z_K ؟
 - $\frac{z_K-b}{z_K-c}$ أحسب. $c=\frac{2a}{3}$ ذات اللاحقة. $c=\frac{2a}{3}$
 - ماذا تستنتج بالنسبة إلى النقط C ، B و C
 - المستوي المركب منسوب إلى المعلم المتعامد المتجانس و المباشر (\vec{v} , \vec{v})
 - النقطة Z النقطة M الذي يرفق بالنقطة M ذات اللاحقة Z النقطة M' ذات اللاحقة Z' حيث :

$$z' = 3z + 4 - 6i$$

- (أ) حدد طبيعة التحويل h و عناصره المميزة
 - (ب) اكتب z بدلالة 'z ؟
- (z) (ج) (ع) هي مجموعة النقط M من المستوي ذات اللاحقة z التي تحقق z+2-3i=1 حدد المجموعة (ع) ثمّ استنتج أنّ صورتها بالتحويل z+2-3i=1 هي دائرة يطلب تعيين مركزها و نصف قطرها
 - : 4. I ,

$$z_L = \frac{z_K - z_J}{z_K - z_I}$$
 g $z_K = -2 + 3i$, $z_J = 4 - 3i$, $z_I = i$

- ن بيّن أنّ النقطة L هي نقطة من حامل محور الفواصل يطلب تعيين فاصلتها
 - (ب) ما طبيعة المثلث IJL مع التبرير
- $P(z) = (z + 1 + i)(z^2 8\sqrt{3}z + 64)$ وفير حدود حيث P(z) = 0 ثمّ اكتب الحلول على الشكل 1. حل في المجموعة P(z) = 0 ، المعادلة P(z) = 0 الأسي

- $z_2 = 4\sqrt{3} 4i$ و $z_1 = -1 i$ نضع.2
- الأسي على الشكل الجبري ثمّ على الشكل الأسي الشكل الأسي أ
- $\sin\left(\frac{17\pi}{12}\right)$ و $\cos\left(\frac{17\pi}{12}\right)$ من من استنتج القيمة المضبوطة لكل من
 - ج) بين أن العدد $\left(\frac{8}{\sqrt{2}} \times \frac{z_1}{z_2}\right)^{144}$ حقيقي
- (د) نعتبر في المستوي المركب المنسوب إلى معلم متعامد متجانس و مباشر $(0;\vec{u},\vec{v})$ النقط A و B لواحقها على الترتيب z_1 و z_2
- ABC عين لاحقة النقطة C مركز ثقل المثلث عين لاحقة المثلث
 - المستوي المركب منسوب إلى معلم متعامد متجانس و مباشر (\vec{v} : \vec{v})
 - $z^2-2z+2=0$ المعادلة $\mathbb C$ المعادلة.
 - ين النقط A ، B ، A و C ذات اللواحق بهذا الترتيب: $Z_D=3$ $Z_C=2z_B$ $Z_B=\overline{z_A}$ $Z_A=1+\mathrm{i}$

علم هذه النقط في المعلم (وحدة الرسم 1 cm)

- 3. أثبت أنّ النقط الثلاثة A ، B و B تنتمي إلى دائرةٍ مركزها D يطلب تعيين نصف قطرها
 - DAC و استنتج طبيعة المثلث $\frac{Zc-3}{A-3}$
 - D بالتحاكي الذي مركزه C بالتحاكي الذي مركزه.
- و نسبته 2 و النقطة "C صورة C بالدوران الذي مركزه D و زاويته أثبت أنّ المستقيمين (AC) و (C'C'') هما متعامدان
 - 06 نعتبر من أجل كل عدد مركب z:

$$P(z) = z^3 + 2(\sqrt{2} - 1)z^2 + 4(1 - \sqrt{2})z - 8$$

1.(أ) عيّن العدد الحقيقي b بحيث يكون:

$$P(z) = (z - 2)(z^2 + bz + 4)$$

.P(z)=0 المعادلة \mathbb{C} حل، في حل، المعادلة

2. المستوي منسوب إلى معلم متعامد متجانس و مباشر (\vec{u}, \vec{v}) (وحدة الرسم: 2 cm).

نعتبر الأعداد المركبة:

$$z_2 = \sqrt{2}(-1 - i)$$
 $z_1 = \sqrt{2}(-1 + i)$ $z_0 = 2$

 z_2 عيّن الطويلة و عمدة لكل من z_1 و z_2

- (ب) علّم النقط B ، A و C ذات اللواحق C_1 ، C_2 على الترتيب ثمّ النقطة C_3 منتصف C_4 .
 - (ج) أثبت أنّ المثلث OAB متساوي الساقين.

 $(\vec{u}; \overrightarrow{Ol})$ استنتج قيس للزاوية

- (c) أحسب z_I لاحقة النقطة I، ثمّ طويلة z_I
- (هـ) استنتج القيمتين المضبوطتين لـ $\frac{3\pi}{8}$ د sin (هـ)

07 أجب بصحيح أو بخطأ مع التبرير الإجابة على الأسئلة التالية

- $\operatorname{Re}(z^2) = \left(\operatorname{Re}(z)\right)^2$ ، من أجل كل عدد مركب ه
- عدد مركب غير معدوم. في المستوي المركب المنسوب إلى معلم متعامد متجانس و مباشر $(0; \vec{u}, \vec{v})$ النقط $B \cdot A$ و $C \cdot B$ ذات اللواحق $C \cdot B$ على الترتيب هي من نفس الدائرة ذات المركز $C \cdot B \cdot B$
 - من أجل كل عدد مركب z،

$$Im(z) = 0$$
 فإنّ $|1 + iz| = |1 - iz|$ إذا كان

المستوي المركب منسوب إلى المعلم المتعامد المتجانس و المباشر Z' و Z' عددان مركبان غير معدومين. Z' و Z' نقطتان لاحقتيهما Z' على الترتيب.

$$|z+z'|=|z-z'|$$
 إذا كان $|z+z'|=|z-z'|$ فإنّ المستقيمين ($z=|z-z'|$ متعامدان

المستوي المركب منسوب إلى المعلم المتعامد المتجانس و المباشر $(0; \vec{u}, \vec{v})$

التالية z مجموعة الأعداد المركبة المعادلة ذات المجهول z التالية $z^2 - 3z + 3 = 0$

نسمي z_1 الحل الذي جزؤه التخيّلي موجب

 $\left(\frac{z_1}{\sqrt{3}}\right)^6$ باكتب العدد المركب $\left(\frac{z_1}{\sqrt{3}}\right)$ على الشكل الأسي ثمّ احسب (ب)

ي المستوي لاحقتها z و M' نقطة من المستوي لاحقتها z' حيث $z'=z^2-4z$

، B و I ثلاث نقط من المستوي لواحقها على الترتيب هي :

$$z_I = -3$$
 و $z_B = -4$ ، $z_A = 2$

|z-2| (أ) احسب (z'+4) بدلالة (z-2) ثم استنتج |z'+4| بدلالة (z'+4) و (z'+4) بدلالة (z'+4)

(ب) برهن أنّه إذا كانت النقطة M من الدائرة ذات المركز A و نصف القطر 2 فإنّ النقطة M' هي من دائرة يُطلب تعيين مركزها و نصف قطرها

رج) برهن أنّه إذا كان الشعاع \overline{AM} عموديا على الشعاع \overline{u} فإنّ الشعاع \overline{u} موازي للشعاع \overline{u}

(د) عين قيم العدد المركب z حتى يكون الرباعي 'OMIM متوازي الأضلاع

نعتبر في المستوي منسوب إلى معلم متعامد و متجانس $(0; \vec{u}, \vec{v})$. نعتبر النقط $(0; \vec{u}, \vec{v})$. التى لاحقاتها على الترتيب

.:
$$z_C = 4i$$
 e^{-2i} e^{-2i} . $z_A = 3 - 2i$

1.1) علم النقط ، B و C

ب) ما طبيعة الرباعي OABC ؟ علّل إجابتك.

OABCج)عين لاحقة النقطة Ω مركز الرباعي

عين ثم أنشئ (E) مجموعة النقط M من المستوي التي تحقق : $\|\overrightarrow{MO} + \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 12$

 $z^2 - 6z + 13 = 0$: أ.3 حل في المجموعة \mathbb{C} المعادلة (أ.3

. نسمي z_0 ، z_1 حلي هذه المعادلة

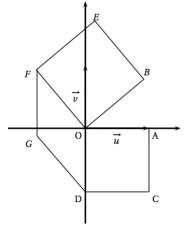
ب) لتكن M نقطة من المستوي لاحقتها العدد المركب
 عين مجموعة النقط M من المستوي التي تحقق:

 $|z-z_0|=|z-z_1|$

المستوي المركب منسوب إلى المعلم المتعامد المتجانس و المباشر $(0; \vec{u}, \vec{v})$

نعتبر في هذا المستوي النقطة A ذات اللاحقة B ، النقطة B ذات اللاحقة D حيث D هو عدد مركب جزؤه التخيّلي موجب تماما.

نُشئ خارج المثلث OAB ، المربعان المباشران ODCA و OBEF كما هو موضح في الشكل التالي



يت اللاحقتان c و d للنقطتين d و d على الترتيب. $\mathbf{1}$

 $\frac{\pi}{2}$ ليكن r الدوران الذي مركزه 0 و زاويته .2

r أ) عين الكتابة المركبة للدوران r

ib هي F استنتج أنّ اللاحقة للنقطة الستنتج

E للنقطة e للنقطة عين اللاحقة

3. نُسمِّي G النقطة التي من أجلها يكون الرباعي OFGD متوازي أضلاع أثبت أنَّ اللاحقة G للنقطة G تساوى (D-1)

أثبت أنّ المثلث $\frac{e-g}{c-g}=\mathrm{i}$ ثمّ استنتج أنّ المثلث فائم و متساوي الساقين.

z نعتبر في مجموعة العداد المركبة z المعادلة ذات المجهول z ($z \neq 2-3$ i) التالية :

$$z = \frac{3i(z+2i)}{z-2+3i} \square$$

1. حل في C هذه المعادلة

ينسب المستوي المركب إلى معلم متعامد و متجانس $(0;\vec{u},\vec{v})$. نعتبر النقطتين A و B اللتين لا حقتاهما على الترتيب $z_B=1-\sqrt{5}$ و $z_B=1-\sqrt{5}$

تحقق أن A و B تنتميان إلى دائرة مركزها O يطلب تعيين نصف قطرها

M' النقطة M من المستوي لاحقتها Z=3 ($z\neq 2$ النقطة M لاحقتها Z'=2

($0; \vec{u}, \vec{v}$) المستوي المركب منسوب إلى المعلم المتعامد و المتجانس

 $L = (\sqrt{3} - 1) + i(\sqrt{3} + 1)$: حيث : المركب حيث L.1

- L^2 معيّن الطويلة و عمدة للعدد المركب (أ)
- (ب) استنتج الطويلة و عمدة للعدد L و اكتبه على الشكل المثلثي
 - $\sin \frac{5\pi}{12}$ و $\cos \frac{5\pi}{12}$ من القيم المضبوطة لكل من ورجا
 - $a = e^{\frac{i}{6}}$ "مو العدد المركب حيث $a = \frac{L}{2+2i}$ هو العدد المركب حيث $a = \frac{L}{2+2i}$
- دات M ذات هو التحويل النقطى للمستوى في نفسه يرفق بكل نقطة M ذات z' = -2az النقطة M' ذات اللاحقة z حيث النقطة
 - (أ) حدد طبيعة التحويل T و عناصره المميزه
- $z_B=\sqrt{3}+\mathrm{i}$ ، $z_A=\sqrt{3}-\mathrm{i}$ الترتيب المحقتيهما على الحقتيهما على A (ب) T عيّن لاحقتى النقطتين A' و B' صورتى النقطتين A و ت
 - 3. (3) هي مجموعة النقط M من المستوي ذات اللاحقة Z التي تحقق
 - $\left|z \sqrt{3} + i\right| = 2$
 - (أ) بيّن أنّ النقطة B نقطة من المجوعة (\mathcal{E})
- (\mathcal{E}) عين الطبيعة و العناصر الميزة للمجموعة (\mathcal{F}) صورة المجموعة T بالتحويل
 - ($0; \vec{u}, \vec{v}$) المستوي المركب منسوب إلى المعلم المتعامد و المتجانس ($0; \vec{u}, \vec{v}$)
 - 1. حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول z التالية: $z^2 + z + 1 = 0$
- $z_B=\overline{z_A}$ ، $z_A=-rac{1+\mathrm{i}\sqrt{3}}{2}$: و $z_B=\overline{z_A}$ ، $z_A=-rac{1+\mathrm{i}\sqrt{3}}{2}$ و عنتبر النقط $z_B=\overline{z_A}$ ، و $z_A=-rac{1+\mathrm{i}\sqrt{3}}{2}$ على الترتيب. (يرمز $\overline{z_A}$ إلى مُرافق z_A)
 - الأستى على الشكل الأستى أكتب z_A على الشكل الأستى
 - (ب) عين مجموعة النقط M من المستوي حيث :

 $\arg[(z - z_A)^2] = \arg(z_A) - \arg(z_B)$

- : ميث M'(z') النقطي T، يرفق بكل نقطة (1) النقطة M(z) حيث عند . $z' = z_A z + z_B \sqrt{3}$
 - ما طبيعة التحويل r ؟ عين عناصره المميّزة
 - (ب) التحاكى h، يرفق بكل نقطة M(z) النقطة (x) حيث : z' = -2z + 3i

عيّن نسبة و مركز التحاكي h

- (h) نضع $S=h\circ r$ (يرمز $S=h\circ r$ نضع)
- عيّن طبيعة التحويل 2 مبرزا عناصره المميّزة، ثمّ تحقق أنّ عبارته

 $z' = 2e^{i\frac{\pi}{3}}(z-i) + i$: المركبة هي

S(0)=C و عديث E و النقطة Ω ذات اللاحقة Ω و النقطة Ω ذات اللاحقة أو النقطة Ω

 $S(D) = E \circ S(C) = D$

- بيّن أنّ النقط O ، O و E استقامية
- $z = 2e^{i\theta} + e^{i\frac{\pi}{2}}$ من المستوى حيث (۱) مجموعة النقط (۱) مجموعة النقط (۱).5 مع θ عدد حقیقی
 - S صورة (۲) بالتحويل (۲) عيّن (۲)

$$z' = \frac{3i(z+2i)}{z-2+3i} \square$$

 $z_D=2-3i$ ، $z_C=-2i$ النقط D ، C النقط D ، C النقط

[CD] و $Z_E=3$ i و (Δ) محور القطعة

- DM و CM بدلالة المسافة OM' و OM'
- (ب) استنتج أنه من أجل كل نقطة M من (Δ) فإن النقطة M' تنتمي

E إلى دائرة (γ) يطلب تعيين مركزها و نصف قطرها. تحقق أن

تنتمى إلى (٢)

- ($0; \vec{u}, \vec{v}$) المستوى منسوب إلى المعلم المتعامد المتجانس (12
- $z_A=1-\mathrm{i}$: و $z_A=1-\mathrm{i}$ ثلاث نقط من المستوي لاحقاتها على الترتيب a

 $z_c = \sqrt{3}(1+i) g z_B = -1+i$

 Z_c و Z_B ، Z_A أكتب على الشكل الأسىّ الأعداد المركبة

- يا أحسب الطويلة و عمدة للعدد المركب $\frac{z_B-z_A}{z_c-z_A}$ ، ثم فسر هندسيا (أ) النتائج المحصل عليها
 - (ب) حدّد طبيعة المثلث ABC
 - 3. عيّن لاحقة النقطة D بحيث يكون الرباعي ACDB معينا
- Z التحويل النقطى الذي يرفق بكل نقطة M من المستوى لاحقتها Tالنقطة 'M ذات اللاحقة 'z حيث:

$$z' = (-1 + i)z + 1 - 3i$$

- (ب) عيّن العبارة المركبة للتحويل T · T ثم استنتج طبيعته و عناصره
 - المستوي المركب منسوب إلى المعلم المتعامد و المتجانس (\vec{u}, \vec{v}) المستوي المركب منسوب

1. حل في مجموعة الأعداد المركبة C المعادلة:

$$(z-3+2i)(z^2+6z+10)=0$$

2. علّم النقط A ، C ، A و I ذات اللاحقات

$$z_I=1$$
 و $z_D=-3-\mathrm{i}$ ، $z_C=-3+\mathrm{i}$ ، $z_A=3-2\mathrm{i}$

z.3 عدد مركب يُحقق الجملة

$$\begin{cases} \arg(z - 3 + 2i) = \arg(z - 1) + \frac{\pi}{2} \\ |z - 3 + 2i| = |z - 1| \end{cases}$$

(أ) بيّن أنّ الجملة تُكافئ:

$$\frac{z-3+2i}{z-1}=i$$

ثمّ عيّن العدد المركب z

- (ب) a هي النقطة ذات اللاحقة $z_B=3$ ، تحقق أنّ : $\overline{AB}=\overline{B}$. ما هي طبيعة الرباعي ABCD ؟
 - $z_I = 1 2i$ لتكن I النقطة ذات اللاحقة (ج)

أكتب على الشكل الأسي العدد المركب Z حيث :

$$Z = \frac{z_A - z_I}{z_B - z_I}$$

تحقق أنّ $\overrightarrow{ABI} = \overrightarrow{JI}$. ما هي طبيعة الرباعي ABIJ ؟

[AC] هي محور القطعة (F)

[AB] هي الدائرة التي قطرها (F)

نعتبر في مجموعة الأعداد المركبة المعادلة $z + |z|^2 = 7 + i$. هذه

المعادلة تقبل:

□ حلين متمايزين حيث جزؤهما التخيّلي يساوي 1

□ حلاحقيقيا

□ حلين متمايزين حيث الجزء التخيّلي لأحدهما فقط يساوي 1

□ حلاحيث جزؤه التخيّلي يساوي 2

z الجزء الأول نقبل أنّه من أجل كل عددين مركبين غير معدومين arg(zz') = arg(z) + arg(z') [2 π] ، z'

برهن ما يلي: من أجل كل عددين مركبين غير معدومين z و 'z،

$$\arg\left(\frac{z}{z_{\prime}}\right) = \arg(z) - \arg(z^{\prime}) \quad [2\pi]$$

الجزء الثاني المستوي المركب منسوب إلى معلم متعامد متجانس و

(4cm وحدة الرسم (0; \vec{u} , \vec{v}) مباشر

نُسمى B النقطة ذات اللاحقة i و M_1 النقطة ذات اللاحقة:

$$z_1 = \frac{\sqrt{3} - 1}{2} (1 - i)$$

1. نُذكر أنه، من أجل كل عددين مركبين z و 'z،

$$|zz'| = |z| \cdot |z'|$$

عيّن، باستعمال الجزء الأول، الطويلة و عمدة للعدد المركب 21.

لتكن M_2 النقطة ذات اللاحقة Z_2 ، صورة M_1 بالدوران الذي مركزه.

 $\frac{\pi}{2}$ و زاویته $\frac{\pi}{2}$.

عيّن الطويلة و عمدة للعدد المركب z2.

y=x الذي معادلته M_2 النقطة النقطة M_2 الذي معادلته أثبت أنّ

لتكن M_3 النقطة ذات اللاحقة Z_3 ، صورة M_2 بالتحاكى الذي M_3

مركزه 0 و نسبته 2 + $\sqrt{3}$.

 $z_3 = \frac{\sqrt{3}+1}{2}(1+i)$ أثبت أنّ (أ)

(ب) أثبت أنّ النقطتين M_1 و M_3 تنتمي إلى الدائرة التي مركزها B و نصف قطرها $\sqrt{2}$.

 M_3 و M_2 ، M_1 و M_3 و M_2 .

بكل نقطة M (تختلف عنB) من المستوى ذات اللاحقة Z نرفق النقطة

 $z' = \frac{1}{\mathrm{i}-z}$ دات اللاحقة 'z' حيث ، M'

عيّن (E) مجموعة النقط M من المستوي بحيث تكون M' تنتمي إلى

الدائرة التي مركزها 0 و نصف قطرها 1.

16 المستوي المركب منسوب إلى المعلم المتعامد المتجانس المباشر

(2cm وحدة الرسم) ($0; \vec{u}, \vec{v}$)

1. حل في © المعادلة:

 $(z-2i)(z^2-2z+2)=0$

تُعطى الحلول على شكلها الجبري و الأسي (مع التبرير)

2. لتكن النقطتين A و B ذات اللاحقتين

$$z_B = 2i$$
 $g = z_A = 1 + i$

نرفق لكل عدد مركب z يختلف عن z_A العدد المركب:

$$z' = \frac{z - 2i}{z - 1 - i}$$

z' نتكن (E) مجموعة النقط M ذات اللاحقة z بحيث يكون (i)

عدد تخيّلي صرف. عيّن و أنشئ المجموعة (E)

(ب) لتكن (F) مجموعة النقط M ذات اللاحقة z بحيث يكون

(F) عين و أنشئ المجموعة |z'|=1

 $\frac{\pi}{2}$ الدوران الذي مركزه $\Omega\left(\frac{3}{2};\frac{5}{2}\right)$ و زاويته R

(أ) أحسب لاحقة النقطة B' صورة النقطة B بالدوران B و لاحقة

النقطة I' صورة النقطة النقطة الدوران. النقطة الدوران.

(P) ما هي صور ڪل من المجموعتين (E) و (F) بالدوران (F)

المعلم المتعامد المتجانس و المباشر المعلم المتعامد المتجانس و المباشر (\ddot{u}, \ddot{v})

لتكن المجموعة (E) للنقط M ذات اللاحقة Z التي تحقق:

مع heta عددا حقیقیا $z=1-2\mathrm{i}+\mathrm{e}^{\mathrm{i} heta}$

-1 + 2i هي المستقيم الذي يشمل النقطة ذات اللاحقة (E)

=1+2i هي الدائرة التي مركزها النقطة ذات اللاحقة =1+2

نصف قطرها 1

و نصف (E) هي الدائرة التي مركزها النقطة ذات اللاحقة 1-2i و نصف

قطرها 1

له (E) هي الدائرة التي مركزها النقطة ذات اللاحقة 1-2i و نصف —

 $\sqrt{5}$ قطرها

ليكن f التطبيق الذي يرفق بالنقطة M ذات اللاحقة z النقطة M' ذات f

z' = -iz - 2i اللاحقة z'

□ التطبيق هو تحاكى

i هي سابقة للنقطة ذات اللاحقة 1-2 هي سابقة للنقطة ذات اللاحقة

 $-\frac{\pi}{2}$ التطبيق هو دوران مركزه النقطة ذات اللاحقة i+1 و زاويته $\frac{\pi}{2}$

-1 التطبيق f هو دوران مركزه النقطة ذات اللاحقة i -1

 $-\frac{\pi}{2}$ و زاویته

3. لتكن المجموعة (F) للنقط M من المستوي ذات اللاحقة z التي تحقق: $|z-1+{\rm i}|=|z+1+2{\rm i}|$

و ليكن A ، B و C النقط ذات اللواحق B ، A و و B ، A

على الترتيب

(F) هي نقطة من المجموعة C

[AB] هي محور القطعة (F) □

حل تمارين و إرشادات

,,,