- نهائي علوم و رياضيات

مراجعة بداية السنة

2017-2018

1 معادلات و متراجحات

تطبيق 1 ───

حل في ₪ المعادلات و المتراجحات التالية :

$$x^4 - x^2 - 12 = 0$$
 (2 $\frac{2}{3}x^2 - \frac{1}{6}x - \frac{1}{12} = 0$ (1

$$(4-2x^2)(2x-1) \ge 0$$
 (4 $\frac{6}{2x+1} < 4x-1$ (3

نطبیق 1

 $\frac{-6x^2 - 3x - 3}{(x+1)(x-2)} \ge 0$

 $f(x) = -x^3 - 2x^2 + 4x + 5$

هو تمثيلها البياني في المستوي المنسوب إلى المعلم (\mathfrak{C}_f)

1. عيّن معادلة للمماس (T) للمنحنى (\mathfrak{C}_f) في النقطة ذات

2. نُريد دراسة وضعية المنحنى (\mathcal{C}_f) بالنسبة إلى مماسه (T)

(ب) استنتج ثلاثة أعداد حقيقية a و b ، a و يكون

 $P(x) = -x^3 - 2x^2 + 7x - 4$ ليكن كثير الحدود (1)

C(x) شكل جدول إشارة (ب

المعرّفة على $\mathbb R$ كما يلى f المعرّفة على المالة f

المتعامد و المتجانس $(O; \vec{i}, \vec{j})$.

P(-4)

1. أثبت أنّ المتراجحة (1) تكافئ:

2. نضع

تطبيق 4

3. استتج حلول المتراجحة (1)

تطبيق 2 _________ 2

برر صحة أو خطأ كل اقتراح :

 \mathbb{R} من x من أجل كل $\sqrt{-x}$ العبارة $\sqrt{-x}$ من

 \mathbb{R} العبارة |x| معرّفة من أجل كل من |x|

 $1 \le x \le 7$ تُكافئ $|x-3| \le 4$

 $A(x) = \frac{x - 2\sqrt{x}}{\sqrt{x}}$ نتکن (۱) .2

ما هي قيم العدد الحقيقي x التي من أجلها تكون العبارة A(x) معرّفة ؟

x غير معدوم : (ب) برّر أنّه من أجل كل عدد حقيقي

$$\frac{x - 2\sqrt{x}}{\sqrt{x}} = \sqrt{x} - 2$$

المطلقة المط

(x) و $(\sqrt{x})^2$ ، $(\sqrt{x^2})$ و (x)

(ج) لماذا المساواة التالية خاطئة:

 $x-2\sqrt{x^2}=-x$ ، $x\in\mathbb{R}$ من أجل كل

تطبيق 5 _______ تطبيق 5

دل في \mathbb{R} المعادلات و المتراجحات التالية :

 $P(x) = (x+4)(ax^2 + bx + c)$

(T) استنتج وضعیة (\mathcal{C}_f) بالنسبة إلى

 \mathbb{R} على P(x) على

 $2-x < \sqrt{-x+4}$ (2 $\sqrt{x-3} = -x+5$ (1

 $x+1 \le \sqrt{x^2-3x-4}$ (4 $2x+5 > \sqrt{x-2}$ (3

تطبیق 3 −

نعتبر في المجموعة $\{-1;2\}$ المتراجحة :

$$\frac{-2x}{x+1} \ge \frac{4x+3}{x-2} \tag{1}$$

الدوال العددية

f الجزء الثاني دراسة الدالة

: بما يلى $x \neq 1$ نقبل أنّ الدالة f معرف من أجل كل

$$f(x) = x + 5 + \frac{4}{x - 1}$$

- (\mathcal{C}_f) هي مركز تناظر للمنحنى الدرية النقطة المنحنى الدرية الفطة المنحنى المنحنى المنحنى المنحنى المنحنى المنحنى
 - 2. عيّن نقط تقاطع المنحنى (\mathcal{C}_f) مع محور الفواصل.
- 3. احسب نهایات الدالة f عند أطراف مجموعة تعریفها معل المنحنی (\mathcal{C}_f) یقبل مستقیما مقاربا موازیل لمحور التراتیب \hat{f}
- 4. أثبت أنّ المستقيم (Δ) ذا المعادلة y=x+5 هو مقارب للمنحنى (C_f) عند ∞ و عند ∞ .

 (Δ) ادرس وضعية المنحنى (\mathcal{C}_f) بالنسبة إلى المستقيم

f' (۱) هي الدالة المشتقة للدالة f'

 $x \neq 1$ أثبت أنّه من أجل كل عدد حقيقى

$$f'(x) = \frac{x^2 - 2x - 3}{(x - 1)^2}$$

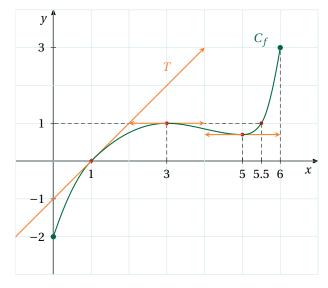
- ين حسب قيم x ، إشارة f'(x) ثمّ استنتج اتجاه تغيّر f الدالة f
 - f شكّل جدول تغيّرات الدالة (ج)
- 6. عيّن معادلة لـ (T) المماس للمنحنى (\mathfrak{C}_f) في النقطة E ذات الفاصلة 2

عيّن إحداثيات النقطة F التي يكون المماس فيها (T') يُوازي (T)

7. أنشئ المستقيمات المقاربة، المماسين (T) و (T') ثمّ المنحنى (\mathfrak{C}_f)

^^^^

المنحنى التالي هو لدالة f قابلة للاشتقاق على \mathbb{R} و \mathbb{T} هو المماس للمنحنى (\mathcal{C}_f) عند النقطة ذات الفاصلة 1



- f'(5) و f'(1) ، f(1) ، f(0) و .1
 - 2. حل بيانيا في المجال [6;6]
 - f(x) = 0 lia (1)
 - f'(x) = 0 المعادلة (ب
 - $f'(x) \ge 0$ المتراجحة (ج)

: هي الدالة المعرّفة على $\mathbb{R}-\{1\}$ بما يلي f

$$f(x) = ax + b + \frac{c}{x - 1}$$

حيث b ، a و c هي ثلاثة أعداد حقيقية

(C_f) هو تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس ($O; \overrightarrow{t}, \overrightarrow{J}$). (وحدة الرسم : 1 على محور الفواصل و 0,5 cm على محور النراتيب)

الجزء الأول تعيين عبارة الدالة

عيّن الأعداد الحقيقية b ، a و علما أنّ:

- A(0;1) المنحنى (\mathcal{C}_f) يشمل النقطة
- B(3;10) يشمل النقطة (\mathbb{C}_f) المنحنى
- المنحنى (\mathcal{C}_f) يقبل في النقطة B مماسا موازيا لمحور الفواصل